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Abstract: Mesenchymal stromal cells (MSC) isolated from a variety of adult tissues including the bone marrow (BM), 

have the capacity to differentiate into different cell types such as bone and cartilage and have therefore attracted scientific 

interest as potential therapeutic tools for tissue repair. MSC display also immunosuppressive and anti-inflammatory prop-

erties and their putative therapeutic role in a variety of inflammatory autoimmune diseases is currently under investiga-

tion. Joint destruction, caused by persistent inflammation, renders rheumatoid arthritis (RA) a possible clinical target for 

cartilage and bone repair using BM MSCs for their tissue repair and immunoregulatory effects. A number of studies, 

based mainly on experimental animal models, have recently provided interesting data on the potential of BM-MSCs to 

suppress local inflammation and tissue damage in RA whereas tissue engineering and cell-scaffold technology represents 

an emerging field of research. This review deals with the biological repair/regeneration of joint tissues in RA via MSC-

based therapies. In view of the current interest in the autologous usage of BM MSC in RA, all available data on the bio-

logical properties of patient MSCs including the immunoregulatory characteristics, differentiation capacity towards osteo-

cytes/chondrocytes, clonogenic/proliferative potential and molecular/protein profile and the possible influence of the RA 

milieu will be also summarized.  

Keywords: Mesenchymal stromal cells (MSCs), bone marrow, rheumatoid arthritis, autoimmune diseases, tissue regenera-
tion.  

INTRODUCTION 

As continuous cellular rejuvenation is needed for all 
animal tissues to remain vital, progenitor, tissue-specific 
stem/progenitor cells are needed to provide various mature 
phenotypes. Mesenchymal progenitors, more frequently re-
ferred as mesenchymal stromal cells (MSC) originally iso-
lated from the bone marrow (BM) [1], can also be found in a 
variety of tissues and organs such as the synovial membrane,  
[2] synovial fluid [3], muscle [4], cartilage [5-7], bone [2, 8], 
adipose tissue [9,10], placenta [11], amniotic fluid [12] and 
umbilical cord [13-15]. MSCs display the capacity to gener-
ate stem progeny through symmetric or asymmetric divi-
sions, as well as cells differentiated into the lineages of the 
tissue that they reside. However, compared to the traditional 
tissue-specific stem cells, MSCs display a high degree of 
plasticity as they can differentiate upon proper inductive 
signals to several lineages of different tissues or organs or 
even to switch between lineages of different embryonic ori-
gin [16,17]. 

 BM is an easily accessible source of MSCs and, there-
fore, BM MSC properties have extensively been studied [18-
21]. In contrast to the hematopoietic stem cells (HSCs), BM 
MSCs do not display a unique cellular identification marker. 
Instead, they express several cell surface antigens upon in 
vitro expansion such as the Stro-1 [22,23], CD105 (endoglin; 
SH2) [24], CD73 (SH3/SH4) [22,25], CD44 (hyaluronate 
receptor) [26,27], CD90 (Thy-1) [26], CD106 (vascular  
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cell adhesion molecule-1, VCAM-1) [26], CD166 (activated 
leukocyte cell adhesion molecule, ALCAM) [28], 
CD29/CD49 (integrin family) [29], and CD200 [30] whereas 
they are negative for CD45, CD14 and CD34, markers spe-
cific for leukocytes, monocytes and HSCs, respectively [31]. 
The true in vivo phenotype of BM MSCs is still elusive. The 
low-affinity nerve growth factor receptor (LNGFR/CD271) 
and the carbohydrate embryonic stem cell antigen SSEA-4 
have been recently emerged as highly specific markers for 
native BM MSCs [32-34]. Regarding their differentiation 
potential, it has been clearly shown that BM MSCs can dif-
ferentiate towards osteoblasts [35], chondrocytes and adipo-
cytes [35], cardiomyocytes [29], tendon cells and fibroblasts 
[36], among others.  

 BM MSC frequency, calculated by means of colony-
forming unit fibroblast (CFU-F) or limiting dilution assays, 
has been estimated as 1 per 10

5 
BM nucleated cells [37,38]. 

Although rare, MSCs influence the local environment by 
secreting several growth factors such as stem cell factor 
(SCF), interleukin (IL)-6, leukemia inhibitory factor (LIF), 
granulocyte-macrophage and macrophage colony stimulating 
factors (GM-CSF and M-CSF, respectively), chemokines 
such as IL-11, IL-15, and stromal derived factor-1 (SDF-1), 
adhesion molecules such as the intracellular adhesion mole-
cule-1 (ICAM-1), VCAM-1, CD44 and extracellular matrix 
components such as fibronectin, collagen and glycosamino-
glycans. By producing all these regulatory factors, MSC ac-
tually control the fate of the neighboring hematopoietic cells 
[39-41], as well as their own. They also respond to local ho-
meostatic and/or traumatic demands and enter a more prolif-
erative state resulting in tissue maintenance and rebuilding.  

On the basis of their in vitro potential to differentiate into 
osteocytes and chondrocytes, BM MSCs have emerged as 
particularly promising therapeutic tools for bone and carti-
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lage disorders whereas their regenerative potential and im-
munoregulatory effects render them potentially more power-
ful for degenerative and inflammatory diseases [42,43]. 
Rheumatoid arthritis (RA) is a candidate disease for articular 
repair requiring both cartilage/bone regeneration and lo-
cal/systemic immunoregulation, potentially through MSCs. 
This review summarizes the available data on the biological 
properties of BM MSCs in RA as well as the hitherto clinical 
experience and future perspectives of this treatment ap-
proach. It should be stated that in this review, data from both 
human and murine research were included; hence some of 
the published research relating to murine models may not be 
relevant in humans.  

MSCs IN RA 

The Synovial Defect 

RA is a common chronic autoimmune inflammatory dis-
ease (AID) mainly affecting the synovial membrane and the 
underlying cartilage and bone. The trigger of the autoimmu-
nity process leading to the inflammation and destruction of 
the affected joints remains elusive [44]. RA patients, esti-
mated as 1% in the general population, have a poor long-
term prognosis and reduced overall life expectancy [45]. 

The synovial membrane in the affected RA joints, con-
sisting mainly of fibroblast-like synoviocytes (FLS) and in-
flammatory cells, becomes hyperplastic (pannus) and the 
normally cell-free synovial fluid is gradually populated by 
numerous infiltrating inflammatory cells such as activated T- 
and B-lymphocytes, monocytes, macrophages and FLS. The 
T-lymphocytes are considered as the key cell-components of 
the autoimmune process [44]. Specifically, activated CD4

+
 

T-cells stimulate monocytes, macrophages and synovial FLS 
to produce pro-inflammatory cytokines such as IL-1 , IL-6, 
tumor necrosis factor (TNF)  and matrix metalloproteinases 
(MMPs). Inflammation is installed in the joint and attacks 
the underlying cartilage and bone. The cartilage is invaded 
by aggressive, highly proliferating FLS that cause cartilage 
destruction by producing MMPs whereas the native osteo-
clasts are triggered to damage further the cartilage and bone 
[46]. It seems that the combination of the accelerated tissue 
damage due to the underlying autoreactive/inflammatory 
process and the ineffectiveness of the tissue regeneration 
machinery are responsible for the joint destruction. The 
pathogenetic mechanisms underlying tissue damage in RA 
joint are depicted in Fig. (1).  

 TNF  is one of the cardinal mediators of the local tissue 
damage and systemic manifestations of RA and, therefore, 
the cytokine has been considered as a key-target of anti-
arthritic biological therapies [47]. Most RA patients respond 
effectively to anti-TNF  treatments with a marked recess of 
the inflammation and improvement of the local and systemic 
symptoms [48]. However, by the time of diagnosis, a signifi-
cant proportion of RA patients may have already acquired 
cartilage and bone deformities. Autologous or even alloge-
neic BM MSCs locally injected or implanted in biomaterials 
upon in vitro expansion and differentiation, might be an effi-
cient therapeutic approach for the repair of the articular dam-
age in RA patients [42,49-52]. The MSC-based technology 
of tissue engineering using biocompatible scaffolds appro-

priate to induce both bone and cartilage formation as well as 
cell-free approaches using bioactive materials with the ca-
pacity to recruit and/or to induce resident MSCs, represent 
an emerging area of research for RA patients requiring skele-
tal reconstruction [53-56]. 

MSCs in RA Synovial Tissues 

Enumerated MSCs expressing bone morphogenic protein 
(BMP) receptors have been isolated in RA synovial mem-
brane [57]. Although the recruitment/influx of these cells in 
the affected joints may represent a physiological response to 
the local tissue injury, it might also imply a contributory 
effect of MSCs in the disease process [58]. Specifically, it 
has been suggested that BM MSCs are recruited in the in-
flamed joint through bone-joint interconnecting canals and 
gradually repopulate the synovial membrane. These cells 
have been shown to express embryonic growth factors, nor-
mally regulating limb bud mesenchyme and BM stem cell 
development, such as wingless (wnt) and frizzled (fz) mole-
cules. The wnt/fz signaling pathway has been implicated in 
the transcriptional control of stem cell renewal/different-
iation process but also in inflammation induction through 
protein kinase C activation [59-62]. It has even been hy-
pothesized that the abnormal RA FLS may be transformed 
BM MSCs “frozen” at early stages of differentiation by the 
inflammatory mediators. This hypothesis was exploited by a 
recent study in animal models of RA which showed that ar-
thritic FLS contain an increased fraction of BM-derived 
MSCs and that the differentiation potential of these FLS to-
wards the adipogenic and osteogenic lineages is abolished by 
the inflammatory cytokine IL-1 , present in the inflamed 
joint, presumably through activation of the nuclear factor- B 
(NF- B) [63].  

 In collagen–induced arthritis (CIA) animal models, 
MSCs are found in early stages of disease in the periosteum, 
cortical bone, epiphysial region, synovial membrane and in 
enlarged bone-joint interconnecting canals. Anti-TNF  
treatment has been shown to reduce MSC numbers in BM 
and synovium indicating a direct effect of this cytokine in 
the recruitment of MSCs to the inflamed joint [58]. The 
gradual invasion and proliferation of these immature MSCs 
by a plethora of local inflammatory signals may further 
augment the cellular hyperplasia and destruction process 
through autocrine and/or paracrine production of cytokines, 
chemokines, cell cycle regulators, adhesion proteins and 
MMPs [62,64]. Collectively, BM derived immature MSCs in 
an attempt to restore the tissue damage and regenerate the 
articular structures through a cellular differentiation process, 
may also induce a cascade of events and subcellular path-
ways, associated with their immature phenotype, that sustain 
the chronic inflammatory process (Fig. 1). 

The Properties of BM MSCs in RA 

A critical question is whether BM MSCs are depleted or 
functionally altered and therefore incapable to repair the 
joint damage in RA. This might be due to a primary or, most 
likely, to a secondary defect associated to the chronic in-
flammatory process or even to the long-standing immuno-
suppressive medication. This has been considered in the case 
of BM HSCs in RA. Specifically, it has been shown that the 
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reserves, the clonogenic potential and overall survival of 
HSCs and their progeny are defective in RA patients and 
these abnormalities reverse following anti-TNF  therapy 
suggesting a cytokine-mediated effect on patients’ hema-
topoiesis [65,66]. Interestingly, it has been recently shown 
that BM MSCs display reduced proliferative capacity and 
defective chondrogenic and adipogenic activity in another 
degenerative arthritis, namely the osteoarthritis [67]. These 
abnormalities might explain, at least in part, the increased 
bone density and loss of cartilage characterizing the articular 
abnormalities in osteoarthritis. 

 We have recently studied the reserves, function and dif-
ferentiation potential of BM MSCs in RA patients and we 
have also characterized their proteomic and molecular profile 
in comparison to healthy subjects [38]. The number, im-
munophenotypic and survival characteristics as well as the 
osteogenic, chondrogenic and adipogenic potential of patient 
MSCs were within normal limits. In vitro differentiation of 
patient MSCs are shown in Fig. 2. MSCs’ proteomic profile 
and production of inflammatory cytokines, chemokines and 
growth factors such as IL-1 , IL-6, IL-8, IL-15, TNF , SDF-
1 and transforming growth factor 1 (TGF- 1) was also 
normal suggesting that BM MSCs do not display primarily 
the abnormal phenotype of the RA FLS. Interestingly, how-
ever, patient MSCs had defective clonogenic and prolifera-
tive potential and decreased expansion growth rate through 
passages compared to controls probably due to a premature, 

age-inappropriate telomere loss. We have postulated that 
under the influence of the inflammatory BM milieu, MSCs 
of RA patients undergo accelerated proliferation that finally 
result in premature replicative exhaustion and cell senes-
cence. Alternatively, the previously reported stochastic, ge-
netically-determined variation of telomere shortening in RA 
patients may also have a role in the inappropriate MSC se-
nescence [68]. In agreement with the observed attenuation of 
cell growth, MSC gene expression profile revealed a possi-
ble repressive influence of the inflammatory microenviron-
ment on G1/S transition. The commonly used anti-rheumatic 
therapeutic agents such as methotrexate, corticosteroid, anti-
cytokine and disease modifying anti-inflammatory agents did 
not seem to affect the survival and functional characteristics 
of BM MSCs. Overall, despite some restrictions related to 
the reduced clonogenic/proliferative potential, the data of 
this study encourage the use of autologous MSCs for carti-
lage and bone damage associated with RA.  

THE IMPACT OF INFLAMMATION ON THE PROP-
ERTIES OF MSCs 

An important question is the effect of the inflammatory 
articular environment on the biologic properties of the lo-
cally infused or implanted MSCs. Normally, human BM 
MSCs display immunosuppressive and immunoregulatory 
functions while escape immune recognition as they express 
MHC Class I but not Class II or co-stimulatory molecules 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A model for joint destruction in RA. In this simplistic scheme, an unknown antigen has triggered the autoimmune process mainly 

through T self-reactive cells, which further stimulate the immune responses by activating B-cells and recruiting monocytes (MN) and macro-

phages (M ). Activated T-cells sustain inflammation and indirectly cause tissue damage by inducing the production of the pro-inflammatory 

cytokines IL-1 , TNF  and matrix metalloproteinases (MMPs) by MN, M , and fibroblast-like synoviocytes (FLS). Chondrocytes (CH) are 

also triggered to produce MMPs, contributing therefore to cartilage degradation. Triggered osteoclasts (OC) cause bone erosions. Synovial 

fluid MSCs become aggressive and may transform into FLS. Bone marrow MSCs may contribute to cartilage and bone repair but cell prolif-

erative potential is affected by the inflammatory marrow microenvironment.  
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[69-72]. They inhibit T-cell and B-cell proliferation, promote 
the T-regulatory cell function, affect the production of TNF  
from Dendritic Cells type 1 (DC-1), increase IL-10 produc-
tion from DC-2, decrease IFN  release from T-helper-1 
(TH1) and Natural Killer (NK) cells, and increase IL-4 re-
lease from TH2 cells [73,74]. They also inhibit the effective 
maturation of antigen presenting cells by downregulating the 
CD40 and CD86 co-stimulatory molecule expression [73,75-
77]. MSC immunoregulation is mainly mediated through 
soluble factors rather than cell-to-cell contact interactions. 
The hepatocyte growth factor (HGF), IL-10, TGF- 1, in-
doleamine 2,3-dioxygenase (IDO), prostaglandins, and nitric 
oxide have been recognized as immunoregulatory MSC-
derived molecules [75,78-82].  

 Interestingly, a number of studies have shown that in-

flammatory mediators may alter the immunoregulatory prop-

erties of MSCs. Specifically, IFN  has been shown to 

upregulate MHC class II expression on MSCs, however the 

cytokine also induces the production of HGF, IL-10, TGF-

1, and IDO by MSCs promoting therefore their immuno-

suppressive capacity [83-85]. No conclusive evidence, how-

ever is available on the TNF -mediated effect on the MSC-

induced immunosuppression as contradictory results have 

been reported so far in animal models of RA [86,87]. Data 

from RA patients, however, indicate that MSCs derived from 

the inflammatory BM environment [65] display immunosup-

pressive properties similar to their normal counterparts in 

terms of the capacity to inhibit T-cell proliferation 

[51,82,88]. Nevertheless, the local immunoregulatory effects 

upon local infusion or implantation of autologous or alloge-

neic MSCs in the inflamed RA joint remains to be eluci-

dated.  

 On the basis of experimental data it is anticipated that the 
damaged joint environment will provide chondrogenic and 
osteogenic differentiation signals on MSCs [89]. A concern, 
however, is whether the inflammatory microenvironment 
might affect the differentiation potential of MSCs. It has 
been reported that both TNF  and IL-1  inhibit the multi-
lineage differentiation of MSC lines [90,91]. Although a 
major suppressive effect by these cytokines has been shown 
for the adipogenic induction [92], indirect evidence suggests 
that these cytokines may also suppress the chondrogenic and 
osteogenic formation, since TNF receptor-1 (TNFR1) defi-
cient mice form more cartilage and bone than normal [93]. 
Recent evidence also suggests that TNF   may inhibit chon-
drogenic differentiation of synovial fibroblasts through p38 
mitogen activating protein kinase pathway [94]. Further-
more, in CIA animal models it was shown that TNF  in-
duces the expression of Dickkopf-1 (DKK-1), an inhibitor of 
the wnt signaling, in the synovial membrane and may there-
fore inhibit the osteogenic differentiation normally mediated 
through this pathway [95,96]. Interestingly, the same path-
way has been implicated in chondrogenic differentiation 
during embryonic development [97]. Finally, another possi-
bility is that molecules from the joint microenvironment and 
extracellular matrix components may direct the MSC differ-
entiation towards specific pathways [98]. 

 The effect of the inflammatory microenvironment on the 
survival characteristics of MSCs is also an issue. It has been 
shown that MSC-differentiated osteoblasts express TNFR 
family members including Fas and TNFR1, however they 
are resistant to apoptosis under conditions favoring cell 
growth [99].We have also shown that BM MSCs constitu-
tively and stably express high levels of Fas and TNFR1 
through passages. Interestingly, ligation of Fas may result in 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Undifferentiated and differentiated MSCs from a RA patient. Culture expanded BM MSCs exhibiting the characteristic spindle-

shaped morphology (A), and differentiated cells towards the chondrogenic (B,C), adipogenic (D,E) and osteogenic (F,G) lineages. Chondro-

genic differentiation was identified with Masson (B) and Alcian blue (C), adipogenic differentiation with Oil red O (E) and osteogenic dif-

ferentiation with Alkaline Phosphatase/Von Kossa (F,G) staining. Undifferentiated MSCs have been stained with Giemsa. 
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MSC apoptosis in serum deprivation or low serum condi-
tions whereas the presence of TNF  does not seem to affect 
the survival characteristics of MSCs even at high concentra-
tions [100].  

PERSPECTIVES ON MSC-BASED THERAPIES IN RA 

MSCs can be used under the prism of a variety of treat-
ment strategies in RA. Local delivery of autologous or allo-
geneic MSCs or induction of resident MSCs by appropriate 
biomaterials may promote cartilage and bone regeneration 
and may also alleviate arthritis through production of immu-
nosuppressive factors (Fig. 3). An alternative approach 
might be the local administration of MSCs genetically engi-
neered to produce appropriate tissue remodeling factors 
[101]. For example, MSCs expressing factors influencing the 
skeletal repair, such as BMP-2 [102,103], BMP-4 [104], or 
TGF- 1 [105], have enhanced cartilage and bone formation 
properties. Local cell administration of MSCs, rather than 
systemic, seems to be the appropriate way for orthopaedi-
cians to handle specific bone/cartilage defects. Alternatively, 
systemic administration of MSCs could be used, on the basis 
of their immunoregulatory properties, to modify and reor-
ganize the disturbed immune response in RA. Following the 
encouraging results from the therapeutic application of 
MSCs in acute graft versus host disease (GvHD) [106,107], 
a number of experimental studies have investigated the po-
tential of MSCs to treat AID including RA. Interestingly, in 
an animal lupus model, complete regression of the disease 
was demonstrated upon co-transplantation of BM cells and 
MSCs from the same donor [108] whereas MSCs were also 
shown to ameliorate experimental autoimmune encephalo-
myelitis [109]. Regarding RA, two related studies have been 
reported so far. In the first study the administration of an 

immortalized MSC cell line did not result in any beneficial 
effect in a mouse model of CIA [87] whereas in the second 
study allogeneic BM MSCs prevented or even treated CIA, 
depending on the day of administration [110]. In this study, 
BM MSCs displayed the potential to suppress the autoreac-
tive T-cells in vitro and also the capacity to reduce the levels 
of INF , IL-4, IL-10 and TNF  in animal sera and to in-
crease the proportion of T-regulatory cells in animal spleens. 
Different study design seems to be the cause for the apparent 
controversial results of the aforementioned trials: the immor-
talized cell line used in the first study appears not to possess 
immunosuppressive characteristics. Preliminary clinical data 
also suggest that despite some functional abnormalities, the 
immunosuppressive properties of BM MSCs are intact in a 
number of AID encouraging therefore the concept of sys-
temic administration of MSCs in these diseases [88,111].  

 In conclusion, the use of MSCs for cartilage and bone 
repair in RA is a very promising and exciting area of re-
search. Recently published studies on MSCs in RA are 
summarized in Table 1. Despite, however the continuous 
delineation of the biological properties and mechanisms of 
action of MSCs
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there are still several unanswered 

questions, concerns, and open fields for research. These in-
clude, for example, the definition of the appropriate tissue-
source of MSCs as cells of different origin appear to have 
diverse differentiation capacity. This is not unexpected, as 
MSCs residing in different tissues, have already been ex-
posed to specific differentiation-cues propagated by local 
homeostasis. It has been reported that cartilage-isolated cells 
have a more restricted cell fate to chondrocytes [122] 
whereas synovial fluid MSCs display reduced osteogenic 
and enhanced chondrogenic potential compared to BM 
MSCs [123]. MSC therapeutic efficacy also depends on the 
enrichment procedure as in vitro expansion of MSCs may 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). MSCs in RA treatment. MSCs might contribute to RA treatment by suppressing the local (and even systemic) immune responses 

and by promoting the cartilage and bone formation through their tissue repair and differentiation effects. 
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affect the multipotentiality and may also drive cells to senes-
cence or even to spontaneous transformation [124-127]. 
Therefore, investigation of MSC enrichment procedures are 
currently a challenge [30,32,33,128-131]. Additional studies 
are also required for the detailed definition of bone and carti-
lage differentiation pathways and tissue regeneration events 
as well as for the development of appropriate scaffolds and 
biomaterials. Finally, the long-term efficacy and safety of the 
MSC-based therapies remains to be evaluated through ap-
propriated clinical studies.  
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